Mutations in hemophilia Bm occur at the Arg180-Val activation site or in the catalytic domain of factor IX.
نویسندگان
چکیده
Hemophilia Bm is characterized by a strikingly prolonged plasma ox brain prothrombin time. In an attempt to find an explanation for this phenomenon we have analyzed various aspects of the Bm variants factor IX Deventer, factor IX Milano, factor IX Novara, and factor IX Bergamo. Proteolytic cleavage by factor XIa was normal in two Bm variants, but absent at the Arg180-Val bond in the other two. In the latter variants Arg180 was replaced by either Trp or Gln, whereas Val181----Phe and Pro368----Thr replacements have occurred in the variants that were normally cleaved by factor XIa. In all four variants the Bm effect could be neutralized with a single monoclonal antibody against factor IX. Also, after treatment with factor XIa, none of the Bm variants reacted with antithrombin III (in contrast to normal factor IXa). Purified factor IX Deventer (one of the variants with a replacement of Arg181), either with or without pretreatment with factor XIa, was found to be a more effective competitive inhibitor of the factor VIIa-tissue factor-induced factor X activation than similarly treated normal factor IX. In addition, this inhibitory effect was much more pronounced when bovine tissue factor was used instead of human tissue factor. We propose that the normal activation of factor IX not only produces a conformational change around the active site serine that allows efficient substrate binding and catalysis, but that the same conformational change is instrumental in effectively dissociating factor IXa from the activating factor VIIa-tissue factor complex. Amino acid replacements that disrupt this conformational transition directly (e.g. Pro368----Thr near the catalytic center) or indirectly (mutations at the Arg180-Val activation site) therefore lead to a combination of 1) the loss of coagulant activity and 2) an inhibitory effect in the ox brain prothrombin time assay.
منابع مشابه
Molecular defect in factor IXHilo, a hemophilia Bm variant: Arg----Gln at the carboxyterminal cleavage site of the activation peptide.
A genomic DNA library and the enzymatic DNA amplification technique were used to isolate human factor IX coding sequences of a hemophilia Bm variant, factor IXHilo. A point mutation that resulted in the substitution of a glutamine (CAG) for an arginine (CGG) at amino acid 180 was found in exon VI of the factor IX gene (G----A at nucleotide 20519). This mutation alters the carboxy terminal cleav...
متن کاملMolecular Characterization of the Factor IX Gene in 28 Iranian Hemophilia B Patients
Background: Heterogeneous mutations in the human coagulation factor IX gene lead to an X-linked recessive bleeding disorder known as hemophilia B. The disease is distributed worldwide with no ethnic or geographical priority. Materials and Methods: The aim of this study was to characterize the factor IX gene mutations in 28 unrelated Iranian hemophilia B patients. Polymerase chain reaction (PCR)...
متن کاملبررسی تنوع ژنتیکی مارکر rs438601در جمعیت اصفهان: یک مارکر آگاهیدهنده در تشخیصهای مولکولی هموفیلی B
Introduction: Hemophilia B is an X-linked recessive genetic disease caused by mutations in the coagulation Factor IX gene. Mutations in the Factor IX gene result in dysfunction or deficiency of coagulation factor of IX. Direct mutation analysis involves the ideal method for molecular diagnosis of the disease. However, due to the high number of identified mutations in the gen, the lack of a comm...
متن کاملThe Survey of Effective Agents on Factor VIII and IX Inhibitors in Patients with Hemophilia A and B in Kermanshah Province
Background: Hemophilia is the most frequent severe hereditary hemorrhagic disease due to deficiency of coagulation factors VIII (Hemophilia A) or IX (Hemophilia B) in plasma. We aimed to identify patients with hemophilia in Kermanshah, Iran and assess the incidence of inhibitors in this population and its associated factors. Methods: This study was conducted on patients with hemophilia...
متن کاملExpression of Recombinant Coagulation Factor IX in Human Amniotic Membrane-derived Mesenchymal Stem Cells: A New Strategy to Gene Therapy of Hemophilia B
Background: Hemophilia B is an X-linked hereditary disorder of blood coagulation system which is caused by factor IX (FIX) deficiency. Factor IX is a plasma glycoprotein that participates in the coagulation process leading to the generation of fibrin. Replacement of factor IX with plasma-derived or recombinant factor IX is the conventional treatment for hemophilia B to raise the factor IX le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 265 19 شماره
صفحات -
تاریخ انتشار 1990